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Abstract: The dtfluoromethyl carboxyk acid s-(+)-g was synthesized to assign the absolute 
configuration of diastewomere a and Ih, and the completion of the synthesis of ~difluoromethyl-m- 
tyrosines lab is reported. 

In the preceding letter, we detailed our approach to the synthesis of diastereomedc N- 

acyloxazolidinones 2a.b, intermediates in the proposed synthesis of 8dtfluoromethyLm-tyrosines 

m (Scheme I), In this communication we disclose an independent asymmetric synthesis of 

carboxylic acid $(+)-a which establshes the absolute configuration of the stereocenters in m, 

and we describe th8 completion of the Synthesis of &k. 

I scheme I: 
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A modification of our original approach’ was used to prepare a (Scheme II). Commercially 

available atdehyde awas transformed through a geminal dibromoolefin to a terminal tiihiated 

acetylide,* which was acylated with a Weinreb amide3 producing ketone 4. Asymmetric reduction 

of 9 with R-Alpine-Bran& afforded B-alkynyl alcohol 6 ([c$ = -3.40°(c=1 .O, CHCl3)) in 92% yield 

and 91% enantiomeric excess (ee) as determined by l9F NMR analysis of the Mosher ester.5 

Reduction with lithium aluminum hydride8 {LAH) yielded an (E)-allytic alcohol (91% ee), [ae = 

-5.5” (&X8, CHCls) which underwent an arthoester Clalsen rearrangement with chiratii transfer7 

to afford ester B ([ol]? = -12.1 *@=I .03, CHCl3)). Ckonolysis of @ then produced aldehyde L; 

treatment of 1 with diethylaminosulfur triftuoride (DAST)8 provided a sample of g9m-diiuoride S- 
(+)a9 which was saponified to acid S_la flap = +23.2*@=0.5, CHCl3)). 
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The final phase of the synthesis of I& involves the assignment of the absolute configuration of the 

stereocenters of aby correlation with g, and the stereoselective introduction of the amino group. 

The sign of rotation of S-(+)-g is the same as that of the previously reported carboxylic acid ([c$= 

+39.2” (~31.02, CHCl3)),1 obtained by removal of the chiral auxiliary from diastereomer ?a. By 

correlation therefore, the absolute configuration of the stereocenter in ?a must be S and that of- is 

5. 

For the introduction of the amino group (Scheme Ill), the chiral imide enolates of 2g and 2k were 

quenched by electrophilk azide transfer with 2,4,6-triiipmpylbenzene sulfonyl azide (lrisyl-N3) ; 

good yields of a-azido carboximides IQ.6 and 1pp were obtained as single diastereomers after 

chromatography and 1H NMR (300 MHz, CDCl3) analysis. The diagnostic -CHF2 signals at 6 6.26 

(td, J=2.9,55.6 Hz) for I&t and 6 6.64 (td, J=4.3, 56.2 Hz) for iph were clearly the only ones 

observed, and diastereoaelectivii was thereby judged to be complete. The relative stereochemistry 

of m and m was assigned based on &face delivery of the azide group.19 Removal of the chiral 

auxiliary from 1pa and 1ph was effected using ifthfum hydroxide. Spectral analysis of the a-a&to 

acids confirmed only single diastereomers. Catalytic hydrogenation (10% PcVC) with concomitant 

hydrogenolysis of the benzyl ether completed the synthesis of la and a. Purification by HPLC 

(reverse phase)1 1 afforded samples of diastemomerically pure la and lk.12 

In conclusion, our facile route to fluorinated amino acids la and 1p combines the synthesis and 

chromatographic separation of diastereomerlc j&acyloxazolidinones & and ?h with the use of 

Evans’ methodology for the electrophilic azidation of chiral imide enolates, and affords products of 

high diaatereomeric purity for biological evaluation. 
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analytical data. 
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